Search results for "invariant measures"

showing 3 items of 3 documents

Laminations and tilings of the Hyperbolic upper half plane

2005

This thesis is devoted to the study of dynamical systems associated with tilings of theEuclidean plane or of the Hyperbolic half-plane. A such tiling codes an action of a group ofisometries (namely the group of translations of the plane or the group of affine maps) on a compactmetric space $\Omega$ such that the properties of this action are related with the combinatoricproperties of the tiling. The behaviors of the actions obtained by this way are really various. Insome cases, like for example for the Penrose's tiling, this action is free and minimal. This givesto the set $\Omega$ a structure of a specific lamination called {\it solenoid}. This space islocally the product of a Cantor set w…

[ MATH ] Mathematics [math]invariant measuresharmonic<br />measures.combinatoire[MATH] Mathematics [math]tilingsdynamical systemspavagesmesures harmoniques.mesures harmoniquessystèmes dynamiqueslaminations[MATH]Mathematics [math]mesures invariantes
researchProduct

Lp-uniqueness for elliptic operators with unbounded coefficients in RN

AbstractLet A be an elliptic operator with unbounded and sufficiently smooth coefficients and let μ be a (sub)-invariant measure of the operator A. In this paper we give sufficient conditions guaranteeing that the closure of the operator (A,Cc∞(RN)) generates a sub-Markovian strongly continuous semigroup of contractions in Lp(RN,μ). Applications are given in the case when A is a generalized Schrödinger operator.

Elliptic operators with unbounded coefficients(Sub-)invariant measuresCoresJournal of Functional Analysis
researchProduct

Cores for parabolic operators with unbounded coefficients

2009

Abstract Let A = ∑ i , j = 1 N q i j ( s , x ) D i j + ∑ i = 1 N b i ( s , x ) D i be a family of elliptic differential operators with unbounded coefficients defined in R N + 1 . In [M. Kunze, L. Lorenzi, A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., in press], under suitable assumptions, it has been proved that the operator G : = A − D s generates a semigroup of positive contractions ( T p ( t ) ) in L p ( R N + 1 , ν ) for every 1 ⩽ p + ∞ , where ν is an infinitesimally invariant measure of ( T p ( t ) ) . Here, under some additional conditions on the growth of the coefficients of A , which cover also some growths with an ex…

Discrete mathematicsSemigroupApplied MathematicsNonautonomous parabolic equationsCharacterization (mathematics)Differential operatorParabolic partial differential equationCombinatoricsOperator (computer programming)Cover (topology)Evolution operatorsGradient estimatesCoresInfinitesimal generatorInvariant measureInvariant measuresAnalysisMathematicsJournal of Differential Equations
researchProduct